Enrollment No:	Exam Seat No:

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Mathematics - II

Subject Code: 4SC02MTC1 Branch: B.Sc. (All)

Semester: 2 Date: 31/10/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

a) The order of the differential equation
$$\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} = \left[y + 5\left(\frac{dy}{dx}\right)\right]^{\frac{1}{2}}$$
 is (01)

(a) 1 (b)
$$\frac{1}{2}$$
 (c) $\frac{3}{2}$ (d) 2

b) Solve:
$$(D^2 - 1)y = 0$$
 (02)

$$\mathbf{c}) \quad \int_{0}^{\pi/2} \cos^4 x \ dx = \underline{\qquad} \tag{01}$$

(a) 0 (b) 1 (c)
$$\frac{3\pi}{16}$$
 (d) $\frac{8\pi}{3}$

d) The polar form of
$$z = 1 - i$$
 is _____. (01)

(a)
$$\sqrt{2}e^{\frac{3\pi}{4}i}$$
 (b) $\sqrt{2}$ (c) $\sqrt{2}e^{\frac{\pi}{4}i}$ (d) $\sqrt{2}e^{\frac{-\pi}{4}i}$

e)
$$e^{\pi i} =$$
_____. (01)

(a) 0 (b) 1 (c) -1 (d)
$$i$$

j) The equation
$$2(x^2 + y^2 + z^2) - 2xy + 2yz + 2zx = 3a^2$$
 represents a (01)

k) Find principal value of
$$\log(\sqrt{3}-i)$$
. (02)

I)
$$\int_{-\pi/2}^{\pi/2} \sin^7 x \ dx = \underline{\qquad}.$$
 (01)
(a) 0 (b) 1 (c) $\frac{16}{35}$ (d) $\frac{35\pi}{32}$

Attempt any four questions from Q-2 to Q-8

b) Prove that
$$(1+\sqrt{3}i)^n + (1-\sqrt{3}i)^n = 2^{n+1}\cos\frac{n\pi}{3}$$
. (04)

c) Simplify:
$$\frac{(\cos 3\theta + i\sin 3\theta)^{-2} (\cos 2\theta - i\sin 2\theta)^{\frac{3}{2}}}{(\cos 5\theta - i\sin 5\theta)^{3} (\cos 2\theta + i\sin 2\theta)^{7}}$$
 (03)

Q-3 Attempt all questions (14)

a) Prove that
$$\frac{\sin 7\theta}{\sin \theta} = 7 - 56\sin^2 \theta + 112\sin^4 \theta - 64\sin^6 \theta. \tag{05}$$

b) Find the roots of the equation
$$z^4 - 1 = 0$$
. (05)

c) Solve:
$$y'' + y' - 2y = e^x + \cos x$$
 (04)

a) Using De-moivre's theorem solve
$$z^7 + z^4 + z^3 + 1 = 0$$
. (07)

b) Solve:
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\log x)$$
. (07)

Q-5 Attempt all questions (14)

a) Prove that
$$cosh^{-1}(z) = log \mathbb{Z}z + \sqrt{z^2 - 1}$$
. (05)

b) Find the principal value of
$$(-i)^i$$
. (05)

c) Find the real and imaginary part of
$$\tanh z$$
. (03)

a) Prove that
$$\int_{0}^{1} \frac{x^{6}}{(1+x^{2})} dx$$
 (05)

b) Evaluate:
$$\int_{0}^{\pi} x \cos^{6} x \, dx \tag{05}$$

c) Solve:
$$y'' - 2y' + 4y = e^x \cos x$$
. (04)

Q-7 Attempt all questions (14)

a) Identify, describe and sketch the surface
$$16x^2 + 36y^2 + 9z^2 = 144$$
. (05)

b) Show that the equation
$$2y^2 - 8yz - 4zx - 8xy + 6x - 4y - 2z + 5 = 0$$
 (05) represents a cone whose vertex is $\left(-\frac{7}{6}, \frac{1}{3}, \frac{5}{6}\right)$.

c) Check whether the following sequence convergent or not. (04)

i)
$$\left\{\frac{1}{n}\right\}$$
 ii) $\left\{\left(-1\right)^n\right\}$

- Q-8 Attempt all questions (14)
 - a) Find equation of lines in which the plane 2x + y z = 0 cuts the cone $4x^2 y^2 + 3z^2 = 0$. (05)
 - **b)** Find equation of cylinder whose generators are parallel to $\frac{x}{3} = \frac{y}{2} = \frac{z}{1}$ and guiding curve $x^2 + y^2 + z^2 = 9$.
 - c) Solve: $(D^7 + 18D^5 + 81D^3)y = 0$ (04)